

NIMH MonkeyLogic Manual

Jaewon Hwang, Ph.D.
Staff Scientist

Section on Neurobiology of Learning and Memory (SNLM)
Laboratory of Neuropsychology (LN)

National Institute of Mental Health (NIMH)
National Institutes of Health (NIH)

Contents

1. About NIMH MonkeyLogic

2. Features

3. System Requirements

4. Getting Started

a. Obtaining NIMH MonkeyLogic

b. Software Installation

i. Using a MATLAB app installer

ii. Using a zip file

c. Starting NIMH MonkeyLogic

d. Data Files Supported by NIMH MonkeyLogic

5. Main Menu

a. Logo & Load/Save Settings

b. Conditions File & Run Button

c. Video

d. Input / Output

i. DAQ board settings

ii. Non-DAQ devices (USB, TCP/IP, etc.)

e. Task

6. Creating a Task

a. Conditions File & Timing Script (Runtime Library Version 1)

b. Userloop Function

c. Runtime Library Version 2 ("Scene Framework")

i. Background

ii. Scene Framework

iii. Adapters

iv. MonkeyLogic Graphics Library (MGL)

7. Calibrating Eye/Joystick Signals

a. Raw Signal (Pre-calibrated)

b. Origin & Gain

c. 2-D Spatial Transformation

8. Running a Task

a. Loading a Conditions/Userloop file

b. Pause Menu

c. Control Screen

d. Behavioral Summary & mlplayer

9. Example: Delayed Match-to-Sample Task

a. DMS Conditions File

b. DMS Timing Script

10. NI Multifunction I/O Device

a. Selecting a DAQ Device

b. Device Pinouts

c. Analog Input Ground Configuration

i. Differential mode (DIFF)

ii. Referenced Single-Ended mode (RSE)

iii. Nonreferenced Single-Ended mode (NRSE)

11. Appendix

a. BHV2 Binary Structure

i. Byte order of a struct

ii. Byte order of a cell

b. HDF5 Implementation

c. TrialRecord Structure

d. Structure of Conditions File

e. TaskObjects

f. Runtime Library Functions for Timing script

1

1. About NIMH MonkeyLogic

NIMH MonkeyLogic (NIMH ML) is a MATLAB-based software tool for behavioral control and data
acquisition. It allows users to design sensory, motor, or cognitive tasks with a familiar, high-level
language (i.e., MATLAB) and execute them with high temporal accuracy. Many object types are
available for task composition, such as image, movie, sound, TTL and analog output, and data can be
collected during tasks from various signal sources (analog and digital input, mouse/touchscreen, USB
joystick, TCP/IP eye tracker, etc.). The timing of events can be synchronized with external devices (e.g.,
Plexon, TDT, Blackrock) via event code exchanges.

NIMH ML started with NIMH DAQ Toolbox and MonkeyLogic Graphics Library (MGL). NIMH
DAQ Toolbox was developed to extend the legacy DAQ interface of MATLAB to the 64-bit environment
and support real-time behavior monitoring with one data acquisition device. MGL was written to
provide an information-rich replica of the subject screen, as well as support for transparent images,
movie streaming and low-latency audio output. At first NIMH DAQ Toolbox and MGL were used to
power the original MonkeyLogic on the latest computing environment and released with a modified
version of the original MonkeyLogic. That made the 1st version of NIMH ML.

The 2nd version of NIMH ML is completely re-written from scratch in the object-oriented
programming style and uses its own data file format (BHV2). It is also equipped with upgraded NIMH
DAQ Toolbox and MGL, which support more input devices and more features, and provides a new
scripting framework that can handle more complex graphics and behavior.

http://www.brown.edu/Research/monkeylogic/

2

2. Features

• Full support for latest 64-bit MATLAB
• Compatible with the original MonkeyLogic's behavioral tasks
• NIMH DAQ Toolbox

o Real-time behavioral monitoring (1-ms resolution) using only one DAQ board
o Support for more input devices, including mouse/touchscreen, USB joystick and TCP/IP

eye tracker
• MonkeyLogic Graphics Library (MGL)

o "What you see is what your monkey sees."
o Support for transparent images by alpha blending or color key
o Movie streaming (no limit to movie length)
o Low-latency audio output with XAudio2

• mlplayer: a trial-replay and video-exporting tool
• Simulation mode that allows testing user tasks with no special hardware

3

3. System Requirements

• Windows 7 or later
• MATLAB R2011a or later

o No MATLAB toolbox is required.
• Microsoft Visual C++ 2013 Redistributable1

o Download from https://www.microsoft.com/en-us/download/details.aspx?id=40784
• DirectX End-User Runtimes1

o Download from https://www.microsoft.com/en-us/download/details.aspx?id=8109
• National Instruments Multifunction I/O Device (optional)

o No need to install two boards (unless many connections are necessary)
o USB-type devices are supported.2

1. NIMH ML will open the webpages upon staring up, if those libraries are not installed on the system.

2. The sample transfer rate of USB devices may depend on the system. It is recommended to test the actual
transfer rate on the machine that will be used. Run the “\task\benchmark\2 sample transfer” task.

https://www.microsoft.com/en-us/download/details.aspx?id=40784
https://www.microsoft.com/en-us/download/details.aspx?id=8109

4

4. Getting Started

Obtaining NIMH MonkeyLogic

NIMH ML can be obtained from https://goo.gl/wuxWg7

Software Installation

You can use either a MATLAB app installer (R2012a or later) or a zip file.

Using a MATLAB app installer

Double-click the downloaded *.mlappinstall file. It will open MATLAB and pop up a question
dialog as below. Click the [Install] button and NIMH ML will be added to the MATLAB menu. If this
process fails for any reason, you can manually open MATLAB and install the package by clicking the
[Install App] menu.

The installation directory is dependent on the version of your MATLAB.

\your user directory\Documents\MATLAB\Add-Ons\Apps (R2015b or later)
\your user directory\Documents\MATLAB\Apps (R2015a or earlier)

Using a zip file

Decompress the zip file to a directory that you choose and add the directory to the MATLAB
path. You can add the subdirectories as well, but it is not necessary.

https://goo.gl/wuxWg7

5

Starting NIMH MonkeyLogic

Click the [NIMH MonkeyLogic] icon on the MATLAB APPS menu (if you installed with the
MATLAB app installer) or type "monkeylogic" on the MATLAB command window (if you installed with
the zip file), depending on your installation method.

NIMH ML comes with a delayed match-to-sample task and many other examples. They are
under the "task" directory of the ML directory. To start a task, choose a conditions file by clicking the
[Load a conditions file] button on the ML GUI (left in the figure below) and then hit the [Run] button.

You can run a task without any DAQ board or input device, by activating the simulation mode in
the pause menu. In the simulation mode, most of common input signals are replaced with mouse and
key inputs, like the following.

• Eye: mouse
• Joystick: cursor keys
• Touch: mouse click
• Buttons: key '1' to key '0'

6

Data Files Supported by NIMH MonkeyLogic

NIMH ML supports its own data file format, called BHV2 (*.bhv2), as well as HDF5 (*.h5) and
MAT (*.mat). BHV2 is a private format that is based on a simple recursive algorithm (see “BHV2 Binary
Structure” in the appendix). It provides decent read and write performance and is most recommended.
HDF5 is supported by many commercial and non-commercial software platforms, including Java,
MATLAB, Scilab, Octave, Mathematica, IDL, Python, R and Julia, but its read performance in MATLAB is a
bit disappointing. MAT is MATLAB’s native data format and NIMH ML uses MAT-file Version 7.3. MAT
has a problem that it gets slower as more and more variables are stored, even though the file
compression is disabled.

The mlread function provides a unified read interface for all the formats. It returns trial-by-trial
data in a 1-by-n array of structures.

data = mlread;
data = mlread(filename);
[data, MLConfig, TrialRecord, filename] = mlread(__);

The mlconcatenate function combines trial-by-trial analog data into one large seamless matrix
and adjusts all timestamps accordingly, as if they are recorded in one single trial. This function is useful
when reading data files in which signals were continuously recorded through inter-trial intervals.

data = mlconcatenate;
data = mlconcatenate(filename);
[data, MLConfig, TrialRecord, filename] = mlconcatenate(__);

If you saved the file-source stimuli in the data file, you can retrieve them with the mlexportstim
function.

mlexportstim;
mlexportstim(destination_path, datafile);

7

5. Main Menu
Logo & Load/Save Settings

• Three monkeys logo: Opens the NIMH ML homepage (https://goo.gl/wuxWg7)
• Collapse/Expand menu button (at the top-right corner of the logo): Hides/shows the sub-

 menus (Video, Input/Output and Task). The collapsed menu is useful when running
 NIMH ML on a small screen.

• Config [Locate] button: Opens the config file folder. It is usually the current task directory.
• Load settings: Once a config file is chosen, a pop-up window will show up as below and ask

 which subject’s configuration you want to load from the file. Note that “# of trials to
 run in this block”, “Count correct trials only”, “Blocks to run”, “First block to run” and
 “Subject name” are not overwritten, if the settings are loaded in this way. See “Subject
 name” in the “Conditions File & Run Button” section for more information.

• Save settings: Stores the current settings to the config file (*_cfg2.mat). The button is activated
 only when there is something changed. If any change is about to be overwritten
 without being saved, a file save dialog will pop up. The current config will be saved
 without asking, when the ‘RUN’ button is clicked.

[Collapsed menu]

https://goo.gl/wuxWg7

8

Conditions File & Run Button

• [Load conditions file] button (“To start, load …”): Opens a conditions/userloop file.
o [Help] button: Opens the conditions file manual.
o [Edit] button: Opens the current conditions file in the text editor. The conditions file

 should be reloaded after edits have been completed.
• [Stimulus list] pane: Shows the list of the stimuli found in the conditions file. In case that the

 opened file is a userloop function, it will display ‘user-defined’.
o Earth icon: Displays the stimulus selected in the [stimulus list] pane.
o [Test] button: Displays/plays the selected stimulus, as if it is displayed/played during

 a trial. Pressing any key will stop the test.
• Total # of cond. in this file: Displays the total number of conditions found in the selected

 conditions file.
• [Blocks] pane: Displays the available blocks.

o Total # of cond. in this block: Displays the total number of conditions associated with
 the selected block.

o # of trials to run in this block: Edit this value to determine the number of trials to be
 run in the selected block.

o Count correct trials only: As it states.
o [Chart blocks] button: Opens a figure that shows which conditions appear in which

 blocks, such as the following one.

o [Apply to all] button: Applies the changes to all blocks.

9

• Blocks to run: Only the blocks selected here will be used during task execution. Initially all
 blocks are selected.

• First block to run: Select the first block to run, when the task starts. ‘TBD (to be determined)’
 will let ML determine it, according to the block selection logic in the Task submenu.

• Timing files: Lists the timing scripts used by the current conditions file. In case that a userloop
 function is loaded, ‘user-defined’ will be displayed instead. Double-clicking the timing
 script name will open its runtime file (or the runtime folder if the runtime file is not
 created yet). The runtime file is a custom MATLAB function that is created by combining
 the user timing script and a runtime function provider (trialholder_v1.m or
 trialholder_v2.m) when the RUN button is hit. What ML runs to start the task is this
 runtime file, not the timing script itself.

o [Help] button: Opens the timing script manual.
o [Edit] button: Opens the selected timing file in the MATLAB editor.

• Total # of trials to run: Determines when the task will stop if not manually terminated. This
 includes both correct and incorrect trials.

• Total # of blocks to run: Determines the total number of blocks (not block numbers) to be run;
 the task will end once this number of blocks has executed (or the "Total # of trials to
 run" value has been reached, whichever comes first).

• Subject name: NIMH ML keeps a separate configuration profile per each subject. If the entered
subject name is new, then the current settings are copied under the new name and the “Save
settings” button is activated. If the entered name already exists in the configuration file, the
settings previously saved under the name are loaded automatically.

o Unlike the original ML, NIMH ML keeps the last changes of editable variables in the
configuration file (per each subject) and does not read the variables from the timing
script ever again. When a new subject’s profile is created, the values of editable
variables are also copied from the current subject’s configuration. Therefore, in NIMH
ML, editable variables are never reset to the initial values written in the timing script,
once read. So, to modify their values, do not edit timing scripts. Use the editable
variable dialog in the “Pause menu”.

o If there are unsaved changes when a new name is typed, a pop-up window will ask if
you want to save the changes. However, it is not for the new name you just typed, but
for the name there before you typed. Therefore, the “Save settings” button will stay
active, even after you answer “Yes” to the pop-up.

o When the task is loaded next time, the last subject’s configuration will be loaded
automatically.

10

• Filename format: Set the format of the default data file name.
o ‘expname’ or ‘ename’: Experiment Name
o ‘yourname’ or ‘yname’: Investigator
o ‘condname’ or ‘cname’: Conditions file name
o ‘subjname’ or ‘sname’: Subject name
o yyyy: Year in full (1990, 2002)
o yy: Year in two digits (90, 02)
o mmm: Month using first three letters (Mar, Dec)
o mm: Month in two digits (03, 12)
o ddd: Day using first three letters (Mon, Tue)
o dd: Day in two digits (05, 20)
o HH: Hour in two digits (05, 24)
o MM: Minute in two digits (12, 02)
o SS: Second in two digits (07, 59)

• Data file: Leave this field blank if you want it to be filled with the formatted name.
• Filetype: See “Data Files supported by NIMH MonkeyLogic” in the “Getting Started” chapter.
• Save stimuli: When this option is checked, stimuli used during the task are saved in the data file.

All stimuli created from file source will be saved. Saved stimuli can be extracted by using the
mlexportstim function.

• [RUN] button: Activated when a task is loaded. Upon a click, the current configuration is
automatically saved, and the task begins.

11

Video

• [Latency test] button: Runs a benchmark trial.
• Subject screen device: Lists the screens available on the system.
• [Test] button: Displays an animation on the selected screen, to identify it.
• Resolution: Pixel width, height & refresh rate of the selected screen. To change the resolution,

 use [Windows Display Settings].
• Diagonal size (cm): Enter the diagonal screen size (in centimeters) of the subject's screen.
• Viewing distance (cm): Enter the distance (in centimeters) from the subject's eye to the screen.
• Pixels per degree: This number is used by ML to compute the degrees of visual angle. It allows

 users to specify stimulus coordinates in degrees instead of pixels.
• Fallback screen rect.: This fallback screen is a windowed subject screen and is used for testing

 when there is only one monitor. Set where you want to see it on the screen. [LEFT TOP
 RIGHT BOTTOM] in Windows’ pixel coordinates.

• Forced use of fallback screen: Forces the subject screen to be displayed in a window.
• Vsync spinlock: This is a period before the vertical blank time in which ML stops other jobs and

 just waits for screen flips occurring. Applicable to the runtime version 1 only.
• Subject screen background: Background color of the subject screen.
• Fixation point, Eye tracer, Joystick cursor, Touch cursor: Allows you to use either an

 image/movie or a circle/square of given color and size. Eye tracer and Touch cursor are
 shown only on the control screen.

• Photodiode trigger: Displays black and white squares in turns at the selected location to drive
 the photodiode.

o [Tune] button: Launches the photodiode tuning tool. This tool adjusts the timing of
screen flip commands based on the response
characteristics of the monitor and the photodiode
so that stimuli can be presented close to the time
of eventmarkers. A threshold (scanline #) can be
set manually or automatically. Threshold 0 means
that the screen will be flipped during the vertical
blank time.

12

Input / Output

• [Edit behav. codes] button: Opens the “codes.txt” file that lists Behavioral Code numbers of the
current task with their associated descriptions. If codes.txt exists both in the ML directory and
the current task directory, the one in the task directory is opened and used for the task. You can
also define this code-description association in the timing script with the bhv_code command.

DAQ board settings

• Click the panels in the order shown on the left, to
map behavioral signals with DAQ channels/ports that
they are connected to. If you do not have this connection
information, ask someone who knows it or visually check
the wire connection with the device pinout diagram (see
Device Pinouts).

• Eye X &Y (and Joystick X & Y) must be assigned on
the same board together. Otherwise, an error message
will be displayed, when starting tasks.

• Multiple channels/ports can be assigned to

Reward and Behavioral Codes. Drag on the panel or use
SHIFT + CLICK and CTRL + CLICK combinations.

• In case of digital lines, a line selection dialog will

appear additionally, on clicking the [Assign] button.

13

Non-DAQ devices (USB, TCP/IP, etc.)

• These devices do not have an ADC (analog
digital converter), but NIMH ML can monitor their
output every millisecond based on the software timer.

• Touchscreen
o This option should be checked to store

mouse/touch tracking data to the data file. The tracking
data can be retrieved from AnalogData.Mouse and its
format is [X Y LeftButton RightButton].

• If a USB joystick or TCP/IP eye tracker is
selected here, it has priority over the one connected to
the DAQ board.

• TCP/IP Eye Tracker
o Currently Arrington Research’s

ViewPoint EyeTrackers and SR Research’s EyeLink
trackers are supported.

o [Test] button: Test the TCP/IP
connection.

o The first two signal sources must be X &
Y gaze points (displacement signals). Some GUI components may be disabled, to make
it sure.

o Users need to disable Nagle’s algorithm as instructed below, to get the maximum TCP/IP
performance. Nagle’s algorithm is turned on, by default, in Windows.

1. To get into the registry editor, go to Start > Run > Type: regedit
2. Browse to:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Paramete
rs\Interfaces

3. Find the network interface that you want to modify. You can search for the IP
address assigned to the network adapter.

4. Create two new entries for the interface. You can do this by right-clicking the
interface in the left pane and going to New > DWORD (32-bit) Value.

- Name the first one “TcpAckFrequency” (case sensitive).
- Name the second one “TCPNoDelay” (again, case sensitive).

5. Double-click each of your new entries and set their ‘Value Data’ to “1”. Leave
“Hexadecimal” checked under ‘Base’.

6. Exit your registry and reboot.

http://b.rdkls.com/nagles/

14

(Continued to the Input / Output menu)

• [I/O Test] button: Starts a task that can test the assigned I/O.
• AI sample rate: NIMH ML always acquires samples at 1 kHz, regardless of this setting. Then it

skips some samples at the time of data saving, if this number is set below 1000. In this way,
NIMH ML can monitor behavior with high resolution but keep the data size small.

• AI configuration: Sets the AI ground configuration of the DAQ board. See “Analog Input
Ground Configuration” in the “NI Multifunction I/O Device” chapter.

• AI online smoothing: Smooths input signals to remove noise artifacts. Applicable to the
runtime version 1 only.

• Strobe: Set whether the Behavioral Codes (event markers) will be sent on the rising-edge or
falling-edge of the Strobe Bit. There is also a third option that does not require the Strobe Bit
(“Send and Clear”) for systems that capture the codes based on change detection.
o [Spec] button: You can change the duration of Strobe Bit pulses. See the figure below.
o [Test] button: Sends a test Strobe Bit.

15

• Reward
o [Args] button: Edit the reward function arguments (i.e., goodmonkey) for testing.
o [Edit] button: Opens the current reward function. By default, it opens

reward_function.m in the ML directory. If there is a file in the current task directory
with the same name, the one in the task directory has a priority.

• Reward polarity: Sets whether the reward device will be triggered on a TTL HIGH or LOW signal.
o [Test] button: Sends out a test reward pulse.

• Eye calibration & Joy calibration: See the “Calibrating Eye/Joystick Signals” chapter.
o [Reset] button: Clears the calibration matrix of the currently selected method.
o [Calibrate / Re-calibrate] button: Opens the selected calibration tool.
o [Import] calibration button: Copies the calibration matrix of the currently selected

method from another configuration file.
• Eye [Auto drift correction]: If this percentage is larger than 0 (the maximum is 100), the

positions of the fixation target and the gaze are compared at the end of each trial. If there is a
difference, the calibration matrix is updated to translate the eye position toward the fixation
target according to the number given here. Putting zero disables the auto correction.

16

Task

• [Alert] button: Turns on/off the alert state. If it is ON, NIMH ML calls alert_function.m when
special events occur, such as task_start, block_start, trial_start, etc. See alert_function.m in the
ML directory for details. You can catch those hooks in the function and make ML do special
things, such as sending you a text message and starting an external device.

o [Edit] button: Opens the alert_function.m in the ML directory. If you have a copy of
this file in the task directory, the one in the task directory is used instead.

• On error: What to do if the subject makes an error.
o Ignore will simply disregard errors when the next condition is selected.
o Repeat immediately will cause the same condition to be played repeatedly until the

correct response is made (i.e., trialerror(0) has been set by the timing file).
o Repeat delayed will throw that condition into the queue, but at a later point in the

block; this can happen an indefinite number of times for a given condition. If a
particular condition is repeatedly performed incorrectly, increasing numbers of copies of
this condition will "pile-up" later in the block, though still interspersed with whatever
other conditions still remain to be played.

• Conditions: Determines the method used to select the next condition.
o Random with replacement causes the next trial's condition to be selected randomly,

without regard to which conditions have already been used.
o Random without replacement will randomly choose the next trial's condition but will

exclude those trials already used.
o Increasing and Decreasing simply choose the next condition in numerical order, rising or

falling as appropriate. The condition numbers will "wrap" when the end or beginning of
the condition list has been reached.

o User-defined allows the writing of a MATLAB function (“condition-selection function”)
to determine how conditions are selected. This is useful to enact particular rules about
how certain conditions should follow others, or how the selection of certain conditions
preclude others, for example. This function should be contained in a typical m-file,
should expect the TrialRecord structure as input and should return a single scalar, the
condition to-be-run.

17

• Blocks: Identical in logic to Conditions above. The User-defined option here requires a MATLAB
function that takes the TrialRecord structure as input and returns a new block number (“block-
selection function”). Note that the function will be run on each trial to determine if a new block
should be chosen. It is useful, for example, when behavior must reach a certain threshold
before allowing the next block to proceed.

• Block-change function: This user-created function, if specified, is called after every trial to
determine whether a new block should be initiated. It is passed the TrialRecord structure, and
should return a value of "1" to change blocks, or "0" to continue the current block. The next
block will be selected in the usual manner, according to the options described above. However,
if the Block-Selection Function (above) is set to the same file as the Block-Change Function, this
indicates that the Block-Change Function returns not simply a block-switch flag, but actually
determines the next block to be run (e.g., return "3" to switch to running the third block). This
feature allows one m-file to control both when a block switches and which block is selected next.

• Inter-trial interval (ITI): Enter the desired inter-trial interval (in milliseconds).
• During ITI,

o Show traces: Determines whether to display used stimuli and traces of input signals on
the control screen during the ITI.

o Record signals: Determines whether to record input signals during the ITI. If this option
is selected, the ITI start time is regarded as the beginning of the next trial.

• User plot function: Name of a MATLAB function that will draw to the space normally occupied
by the reaction time histogram on the control screen. Users can use this function to display
results of online trial-by-trial analysis. The function is supposed to take the TrialRecord
structure as input and return nothing.

http://www.brown.edu/Research/monkeylogic/timingscripts.html#trialrecord

18

6. Creating a Task
The best way to learn how to write your own task is to begin with an existing example and try

modifying it. There are many example tasks under the "task" folder of the ML installation directory.

Conditions File & Timing Script (Runtime Library Version 1)

NIMH ML supports the original ML’s behavioral tasks, so a new task can be written in the
traditional style using a conditions file and a timing script. The conditions file is a tab-delimited text file
which lists a set of stimuli that can occur in each trial. Each stimulus is referred to as a "TaskObject" and
can take the form of a visual object, a sound, or an analog or TTL output. The timing script is a MATLAB
program that determines when and under what conditions each of those stimuli is presented. For the
structure of these files and how to write them, please refer to Structure of Conditions File & Runtime
Library Functions for Timing script in the appendix.

In NIMH ML, the userloop function and the runtime library version 2 can be substituted for the
conditions file and the runtime library version 1, respectively.

Userloop Function

The conditions file requires defining all trial conditions explicitly. This may not be convenient
sometimes, for example, when there are so many conditions and stimuli or when the task needs a
flexible way of randomizing trial sequences and handling error trials. A userloop function is a MATLAB
function that feeds the information necessary to run the next trial, in lieu of the conditions file. It is
called before each trial starts and allows user to determine which TaskObject and which timing script
will be used for the trial on the fly. You can also preload large stimuli in the userloop function and reuse
them so that the inter-trial interval does not get increased by the stimulus creation time. The details of
the userloop function are well-documented in the example tasks that are under the "task\userloop\1
dms with userloop" directory of the ML installation folder. See the dms_userloop.m file.

19

Runtime Library Version 2 (“Scene Framework”)

Background

In the runtime library v1, stimulus presentation and behavior tracking are handled by
toggleobject() and eyejoytrack(), respectively. This framework is a little disadvantageous in
designing dynamic, interactive stimuli, due to the following reasons.

1. Stimuli and behavior are processed separately and there is no proper way to change
stimuli during behavior tracking.

2. While tracking behavior, eyejoytrack() tries to read a new sample at 1-ms intervals
or faster, which leaves us too short time to perform sophisticated computation or draw
complex stimuli.

3. Because toggleobject() and eyejoytrack() have many optional arguments, the
cost of switching between two functions is high.

The runtime v2 takes a different approach. In this new runtime, behavior tracking and stimulus
presentation are both handled by one function, run_scene(). In addition, samples collected during
one refresh interval are analyzed all together at the beginning of the next refresh interval and the screen
is redrawn based on the sample analysis.

20

Therefore, the cycle of [analyzing samples]-[drawing screen]-[presenting] is repeated each
frame and, by tapping into this cycle, we can see what happened in behavior and then decide what to
show on the screen.

One disadvantage of this approach is that we don't know when the behavior occurred until the
next frame begins. (See the time of the behavior occurrence, the green arrow, and the time of behavior
detection in the above figure.) However, this cannot be a big issue for the following reasons.

1. We cannot update the screen contents until the next vertical blank time anyway, so it is
not always necessary to detect behavior immediately. (If you use audio stimuli only, that
is a different story and you can stay with toggleobject() and eyejoytrack() in
that case.)

2. We may detect behavior a little later (by one refresh cycle at most), but we don't lose
any information. We can still get the exact time when the behavior occurred. What is
not possible is to call eventmarker() to stamp the reaction time as soon as the
behavior occurs. However, the window-crossing time cannot be an accurate measure of
the reaction time, considering the size of the fixation window is arbitrary. If you are
serious about reaction times, you probably want to use a velocity criterion, which
requires some offline analysis.

In spite of some limitations, this approach has advantages in dynamic and precise frame-by-
frame control of visual stimuli. In fact, it is the way how most of game software handles graphics.

21

Scene Framework

In the runtime library v2, toggleobject() and eyejoytrack() are replaced by two new
functions, create_scene() and run_scene(). create_scene() receives an "adapter" as the input
argument and return a “scene” structure. Then, run_scene() renders a scene with it.

scene = create_scene(adapter [,taskobject]);
flip_time = run_scene(scene [,eventcode]);

The adapter is a MATLAB class object and a building block of a scene. You can make your own
adapter or use the built-in ones. There are already ~40 adapters included in NIMH ML that cover almost
everything you can do with the runtime v1 (and more). Please refer to the manual page included in the
NIMH ML distribution package about the usage of the adapters. To make your own, make a copy of
ext\ADAPTER_TEMPLATE.m and fill in the code.

As the function name indicates, toggleobject() of the runtime v1 turns on and off the
stimulus object at each call.

 toggleobject(1); % turn on Object #1
 toggleobject(1); % turn off Object #1

So, if you don't make the second call, the object stays on the screen. However, in the
create_scene(), the meaning of the taskobject argument is "the objects that are needed to compose
the scene", so they stay on the screen only while the scene is being presented. If you want to show the
objects across multiple scenes, the object numbers should be provided to every create_scene() calls.

The return value of create_scene(), scene, becomes the input of run_scene(). The
optional argument of run_scene(), eventcode, is the markers to stamp at the moment the stimuli are
presented on the screen. And the return value, flip_time, is the time when it occurs.

Adapters

Multiple adapters can be concatenated as a chain, to detect complex behavior or draw complex
stimuli. Below is an example (the file is under the task\runtime v2\0 green star). This example displays
a green star on the center of the screen for 5 sec. To create this scene, three adapters are used.

----- Beginning of green_star.m -----
% create a chain of [NullTracker] -[TimeCounter]-[PolygonGraphic]
tc = TimeCounter(null_);
star = PolygonGraphic(tc);

% set the properties of the adapters
tc.Duration = 5000; % in milliseconds

22

star.EdgeColor = [0 1 0]; % [r g b]
star.FaceColor = [0 1 0];
star.Size = 2; % 2 deg by 2 deg
star.Position = [0 0];
star.Vertex = [0.5 1; 0.375 0.625; 0 0.625; 0.25 0.375; 0.125 0; ...
 0.5 0.25; 0.875 0; 0.75 0.375; 1 0.625; 0.625 0.625];

scene = create_scene(star); % call create_scene if the property setting is done

% run scene
run_scene(scene);
----- End of green_start.m -----

The first adapter is NullTracker (null_). All adapter chains must start with a special adapter
called Tracker. There are 5 trackers and they are all pre-defined with reserved names: eye_, joy_,
touch_, button_ and null_. Each tracker reads new samples from the device that its name
designates. null_ does not read any data. The second adapter is TimeCounter that measures
elapsed time. The third one is PolygonGraphic which draws a star in green.

This is what the TimeCounter adapter looks like.

----- Beginning of TimeCounter.m -----
 1:classdef TimeCounter < handle
 2: properties % user variables, readable & writable
 3: Duration = 0
 4: end
 5: properties (SetAccess = protected) % read-only to users
 6: Success % status variable that indicates whether Duration is passed
 7: end
 8: properties (Access = protected) % internal variables, not accessible to users
 9: Adapter % the underlying adapter, PolygonGraphic in this case
10: end
11:
12: methods
13: function obj = TimeCounter(varargin) % constructor
14: if 0==nargin, return, end
15: obj.Adapter = varargin{1}; % store the underlying adapter, PolygonGraphic
16: end
17: function continue_ = analyze(obj,p) % sample analysis
18: obj.Adapter.analyze(p); % call PolygonGraphic's analyze()
19: obj.Success = obj.Duration <= p.scene_time();
20: continue_ = ~obj.Success;
21: end
22: function draw(obj,p) % draw the screen
23: obj.Adapter.draw(p); % call PolygonGraphic's draw()
24: end
25: end
26:end
----- End of TimeCounter.m -----

23

Each adapter has two functions, analyze() and draw(). These functions are called by
run_scene() during each frame in turns. The first thing they do is to call the same functions in the
underlying adapter (Line 18 & 23). You should not modify these lines, so as not to break the chain.

In analyze() of this adapter, we check whether the time that elapsed from the scene start
passed Duration (Line 19). If it did, set Success true (or false otherwise). continue_, the return value
of analyze(), determines whether we will keep running the scene in the next frame. Here
continue_ becomes false when Success is true, so the scene ends when the elapsed time is equal to or
longer than Duration.

This adapter does not update any graphic, so we just call the underlying adapter's draw() and
finish.

The input argument, p, in analyze() and draw() is an instantiation of the RunSceneParam
class. It contains many useful variables and provides access to some other runtime functions within the
adapter.

p.SceneStartTime: trialtime when the scene started
p.SceneStartFrame: Frame number when the scene started
p.EventMarker: Eventcodes assigned to this variable are stamped at the time when the next
 frame is presented.

p.scene_time(): Time passed from the scene start
p.scene_frame(): Number of frames presented from the scene start

p.trialtime(): The same function that you call in the timing file.
p.goodmonkey(): The new 'nonblocking' option is especially useful when you call goodmonkey()
 in an adapter
p.dashboard(): Display user texts on the control screen

MonkeyLogic Graphics Library (MGL)

To handle graphic objects directly as PolygonGraphic does (see ext\polygongraphic.m), you
need to know how to use MGL (MonkeyLogic Graphics Library). The following is an example MGL code
that shows a circle and a rectangle on the screen.

----- beginning of example code -----
mglcreatesubjectscreen(1,[0 0 0],[0 0 800 600],0); % create the subject screen
mglcreatecontrolscreen([800 0 1200 300]); % create the control screen

id = mgladdcircle([0 1 0; 1 0 0],[100 100]); % add a circle
mglsetproperty(id,'origin',[400 300]); % move the circle to the center
id2 = mgladdbox([1 1 1; 0 0 1],[150 150]); % add a rectangle
mglsetproperty(id2,'origin',[400 300]); % move the rectangle to the center

24

mglrendergraphic(); % render the circle and the rectangle
mglpresent(); % present to the screen

mglactivategraphic([id id2],false); % turn off the circle and the rectangle
mgldestroygraphic([id id2]); % destroy the objects

mgldestroycontrolscreen(); % destroy the control screen
mgldestroysubjectscreen(); % destroy the subject screen
----- end of example code -----

When you write your own adapter, the gray lines above are not necessary because NIMH ML
takes care of them. What you need to do is 1) create objects (mgladdXXXX), 2) change their properties
(mglsetproperty), 3) turn them on/off (mglactivategraphic) and 4) destroy them (mgldestroygraphic).

There are 9 functions that add graphic/sound objects. The sound object can be
activated/deactivated by mglactivatesound and destroyed by mgldestroysound. To play it, use
mglplaysound and mglstopsound.

id = mgladdbitmap(filename); % or mgladdbitmap(bitmap_info);
id = mgladdbox([edgecolor; facecolor],[width height]);
id = mgladdcircle([edgecolor; facecolor],[width height]);
id = mgladdline(color,numPoints); % and mglsetproperty(id,'addpoint',[x1 y1; x2 y2; ...]);
id = mgladdmovie(filename); % or mgladdmovie(frame_info);
id = mgladdpie([edgecolor; facecolor],[width height],start_angle,central_angle);
id = mgladdpolygon([edgecolor; facecolor],[width height],[x1 y1; x2 y2; ...]);
 % x & y: 0-1, normalized coordinates
id = mgladdtext(string);
id = mgladdsound(filename); % or mgladdsound(y,fs);

All these functions return an object id, which you need for manipulating the property of the
object. When the objects are created, they are active, by default (meaning they will be presented on the
screen). If you don't want them to be shown, deactivate them by calling mglactivategraphic(id, false).

Each object has different properties. For the list of manipulatable properties, see mglsetproperty.m

25

7. Calibrating Eye/Joystick Signals
Calibration is a process of converting and aligning voltages of input signals to coordinates of

visual object space. To do so, you first need to set the physical dimensions of the visual space correctly.
Measure the diagonal size of the subject monitor and the distance between the monitor and the subject
and put them in the ML main menu as below. Their units should be the same (let’s all use centimeters,
to avoid any confusion). ML then gives you a conversion factor, pixels per degree (91.717 in the figure
shown below), which ML uses to calculate visual angles. You can use this number to convert the size of
visual objects to visual angles. For example, a 320 x 240 movie is [320 240] / 91.717 = [3.4890 2.6167]
degrees in visual angles.

NIMH ML currently provides options to use Raw Signal and two calibration methods, Origin &
Gain and 2-D Spatial Transformation. The Origin & Gain requires calibration just for 2 fixation points
and is much easier to use with untrained subjects. The 2-D Spatial Transformation requires sampling
voltages for at least 4 fixation points but can do more complex mapping by a projective transform. Both
methods come with a tool that you can conveniently manipulate with the mouse. If you click yellow
squares on the control screen, a fixation point will be shown in the corresponding location on the
subject screen.

There are a few shortcut keys that you can use during calibration. These shortcuts work during
the task as well.

• ‘C’ key: Brings the current eye position to the center of the screen.
• ‘U’ key: Cancels the previous ‘C’ key. You can undo multiple times.
• ‘R’ key: Delivers a manual reward.
• ‘-‘ key: Decreases the reward pulse length by 10 ms.
• ‘+’ key: Increases the reward pulse length by 10 ms.

26

Raw Signal (Pre-calibrated)

Choose this option when the signals are calibrated already, or you want to get unaltered input.
One volt in the calibrated signals should correspond to one degree’s displacement. If the signal is
calibrated but the conversion ratio is not one to one, you can do further adjustment with the Origin &
Gain method.

Origin & Gain

1. Click the "Show Center" button. It will show a fixation point at the center of the subject screen.
Then wait until the subject look at it.

2. Click the "Set Origin" button while the subject is looking at the center. It will register the current
voltage reading. Alternatively, you can click the fixation point (yellow square) at the center with
the mouse left button and press the space bar (or ‘C’ key) to register the voltage.

3. Click one of the fixation points on the periphery. Increase (or decrease) X & Y gains if the
subject's saccade undershoots (or overshoots).

4. Click the "Save" button. The "Cancel" button reverts any change that has been made.

27

2-D Spatial Transformation

1. You can use only selected fixation points for calibration in this method. Selected points have
numbers on them. To select/unselect fixation points, use the right mouse button. If you change
the intervals of fixation points, then some numbers may not be on a fixation point any more.
For those numbers, you can only unselect them.

2. Once you pick up all fixation points you want, you can turn them on/off one by one with the
keyboard (N key & P key) or the mouse left-clicks.

3. Hit the space key while the subject is looking at the displayed fixation point. Then the voltage
reading at that moment will be registered for the shown fixation point and its number will turn
from red to blue.

4. You can choose how you want to reward the fixation behavior. The default option is to deliver
reward at the time of the space key press and move to the next fixation point.

5. Repeat 2) and 3) for the entire selected fixation points a couple of times. Then click the "Save"
button. Eye traces won't appear until there are at least 4 fixation points calibrated.

6. If the Reward option is switched to “On Fixation”, a reward is delivered automatically on fixation
without a space key press. So, you can test the calibration without modifying the current setting.

28

8. Running a Task
Loading a Conditions/Userloop File

To start a task, either a conditions file or a userloop file should be loaded. A conditions file is a
text file that describes what stimuli need to be presented with which timing script. A userloop file does
the same but it is a MATLAB function, not a text file.

Both files can be loaded by clicking the [Load a conditions file] button. The file-open dialog
shows *.m files only, by default, so you need to change the extension type to choose a userloop function.
You can write the userloop filename in a text file and select that text file instead, to make this step
simpler.

Upon loading a conditions/userloop file, some menu
options are populated and activated, such as the “Blocks”
pane and the “Blocks to run” button. These options are
important to control the task flow.

If you click on a different block number in the “Blocks”
pane, “Total # of conditions in this block”, “# of trials to run in
this block” and “Count only correct trials change” change
accordingly and you can customize how many trials to run in
each block.

 “Blocks to run” and “First block to run” allow you to
run only a subset of the defined blocks and choose which
blocks to run very first.

“Total # of trials to run” and “Total # of blocks to run”
let you decide when the task will stop. The task will be paused
whichever between them comes first.

Additionally you should configure the size and resolution of the subject screen (see Calibrating
Eye/Joystick Signals) and the DAQ device (see DAQ board setting and Analog Input Ground
Configuration), to run the experiment properly.

29

Pause Menu

This pause menu appears when the RUN button is hit or when the task is paused. In this menu,
the following options are available. You can use hotkeys or mouse-click to select an option.

• [Space] key: Start/resume the task
• [Q] key: Quit the task
• [B] key: Select a new block
• [X] key: Alter behavioral-error handling
• [E] key: Recalibrate eye signals
• [D] key: Eye auto drift correction
• [J] key: Recalibrate joystick signals
• [V] key: Edit timing file variables
• [S] key: Simulation mode On/Off

30

Control Screen

1. Replica of the subject screen: This panel displays extra information that is available for the
experimenter only, such as the real-time input state, the location and size of fixation windows,
reward delivery, etc., in addition to the stimuli presented to the subject. You can display user-
defined dynamic texts during trials here (see the dashboard runtime function).

2. Time line of events
3. Trial counts and results: Trial results are number-coded as in the trialerror function. The zoom

level is adjustable while the task is paused.
0: Correct
1: No Response
2: Late Response
3: Break Fixation
4: No Fixation

5: Early Response
6: Incorrect Response
7: Lever Break
8: Ignored
9: Aborted

31

4. User text/warning panel: Texts sent by the user_text and user_warning functions are displayed
here. They are updated at the end of each trial, whereas the texts sent by dashboard are shown
up immediately.

5. User plot: This figure can be used to show the result of online behavior analysis. Users can
register their own functions in the main menu. If no function is registered, a default reaction
time graph will be drawn here.

During trials, hotkeys like the following are available.

• ‘ESC’ key: Pauses the task
• ‘C’ key: Brings the current eye position to the center of the screen.
• ‘U’ key: Cancels the previous ‘C’ key. You can undo multiple times.
• ‘R’ key: Delivers a manual reward. The initial pulse duration is 100 ms.
• ‘-‘ key: Decreases the reward pulse length by 10 ms.
• ‘+’ key: Increases the reward pulse length by 10 ms.

Behavioral Summary & mlplayer

When the task is finished, a figure that summarizes behavioral performance is popped up (left
figure). You can launch a trial replay tool, MonkeyLogic player (right figure), from this behavior
summary and export each trial as a video clip. The summary figure and the player can be re-opened
afterwards with the behaviorsummary and mlplayer functions.

32

9. Example: Delayed Match-to-Sample Task

A delayed match-to-sample (DMS) task requires a subject to remember the sample stimulus and
identify it from a set of stimuli presented subsequently. In this version of the DMS task, a trial begins
with an eye fixation. When the subject successfully fixates on the white circle shown at the center of
the screen, an image (“sample”) is displayed briefly, turned off and followed by a delay period. At the
end of the delay period, two images (“sample” and “distractor”) are presented on both sides of the
screen and the subject is required to indicate her/his choice by making a saccade eye movement to the
chosen target. If the choice is correct, a reward is delivered. Then, an inter-trial interval begins.

DMS Conditions File

The above figure is an example conditions file necessary to implement the task. Conditions 1-4
are included in Block 1 and Conditions 5-6 are included in Block 2. In Block 4, all 8 conditions can be run.
Each condition defines 4 stimuli (fixation cue, sample, match and distractor) and they are controlled by
the “dms" timing script.

33

DMS Timing Script

The timing script written for this example is under the “task\runtime v1\1 dms” task. The script
shows how you can present stimuli and monitor behavioral response. In the runtime library version 1,
this is done by the toggleobject and eyejoytrack functions.

% initial fixation:
toggleobject(fixation_point, 'eventmarker',10);
ontarget = eyejoytrack('acquirefix', fixation_point, fix_radius, wait_for_fix);
if ~ontarget
 toggleobject(fixation_point);
 trialerror(4); % no fixation
 return
end
ontarget = eyejoytrack('holdfix', fixation_point, hold_radius, initial_fix);
if ~ontarget
 toggleobject(fixation_point);
 trialerror(3); % broke fixation
 return
end

In the above code, toggleobject turns on “fixation point” and marks a code of 10 in the data file
with a timestamp. Then eyejoytrack waits until the eye fixation is made. If the fixation is not made
within the “wait_for_fix” time (i.e., ontarget is 0), we turn off the fixation point, record the trial result
(“no fixation”) and return. Otherwise, the task proceeds to the next step and another eyejoytrack
checks if the fixation is held.

The same job can be scripted in a different way with the runtime library version 2. In the
runtime v2, the toggleobject and eyejoytrack functions are replaced with create_scene and run_scene,
like the following. The entire code of the runtime v2 example is in the “task\runtime v2\1 dms with new
runtime” directory.

% scene 1: fixation
fix1 = SingleTarget(eye_);
fix1.Target = fixation_point;
fix1.Threshold = fix_radius;
wth1 = WaitThenHold(fix1);
wth1.WaitTime = wait_for_fix;
wth1.HoldTime = initial_fix;
scene1 = create_scene(wth1, fixation_point);
run_scene(scene1, 10);
if ~wth1.Success
 if wth1.Waiting
 trialerror(4);
 else
 trialerror(3);
 end
 return
end

34

10. NI Multifunction I/O Device
Selecting a DAQ Board

NIMH ML works with any NI board that is supported by the NI-DAQmx driver. There is no need
to buy a new board, if you already have one from your old systems. If you buy a new one, pick up the
one that can handle all your I/O needs in one board. It will save the overall cost greatly. Usually new
products using the PCIe bus are cheaper than old PCI-type boards. The following table lists some NI
boards that are suitable for general I/O requirements.

Model Analog Input (SE/DIFF) Analog Output Digital I/O
PCI-6221 16 / 8 2 24 (P0: 8, P1: 8, P2: 8)
PCI-6229 32 / 16 4 48 (P0: 32, P1: 8, P2: 8)

PCIe-6320 16 / 8 0 24 (P0: 8, P1: 8, P2: 8)
PCIe-6321 16 / 8 2 24 (P0: 8, P1: 8, P2: 8)
PCIe-6323 32 / 16 4 48 (P0: 32, P1: 8, P2: 8)

Device Pinouts

To connect external devices to the NI board, you need to know which pin is mapped to which
signal. You can find this information in the product's datasheet (PDFs on the web) or by right-clicking on
installed devices in the NI Measurement & Automation Explorer (NI MAX) software (Windows help file).

35

 Inputs from external devices can be connected to NI boards via NI terminal blocks. Unshielded
screw terminal blocks, such as CB-68LP and CB-68LPR, are low-cost and good for designing a custom
interface box of your own. Or you can choose BNC terminal blocks, like BNC-2090A, if you want some
ready-made solution. For the details, please refer to the NI DAQ Multifunction I/O Accessory Guide.

Analog Input Ground Configuration

To measure analog voltage signals accurately, you need to know whether the signals are
ground-referenced or floating and configure the data acquisition device (i.e., NI board) accordingly. NI
boards require different wiring schemes for different ground configuration, so you should be aware how
the signal sources are connected to your board. There are typically three ground configuration modes
available for NI devices; differential (DIFF), referenced single-ended (RSE) and nonreferenced single-
ended (NRSE).

If your signal sources are referred to an absolute voltage reference, such as earth or building
ground, you can say your signals are ground-referenced and use the RSE mode. However, in a typical lab
environment where many devices run on custom power supplies or batteries, it is likely that your signals
are floating sources which are not tied to a fixed reference. Then, you should use DIFF or NRSE. For
more information, please refer to this online document, Field Wiring and Noise Considerations for
Analog Signals.

Below are the instructions how you should connect the leads from your signal sources to NI
devices, depending on the ground configuration of your choice. You also need to change the [AI
configuration] option on the ML main menu.

Differential mode (DIFF)

In the differential mode, measuring a signal requires connecting one lead of the signal source to
an AI channel pin (AI 0, AI 1, ...) and the other lead to a channel larger by 8. For example, if we measure
a signal on channel 0, one lead goes to AI 0 (Ch 0+) and the other to AI 8 (Ch 0-). This mode can deliver
more accurate measurements with less noise but takes twice as many channels of the NI board as the
other modes.

https://www.nimh.nih.gov/labs-at-nimh/research-areas/clinics-and-labs/ln/shn/interface-for-monkeylogic.shtml
https://www.nimh.nih.gov/labs-at-nimh/research-areas/clinics-and-labs/ln/shn/interface-for-monkeylogic.shtml
http://www.ni.com/product-documentation/53440/en/
http://www.ni.com/white-paper/3344/en/
http://www.ni.com/white-paper/3344/en/

36

Referenced Single-Ended mode (RSE)

In this mode, the measurement is made with respect to the common-mode voltage, for example,
the earth ground of the wall outlets. For this configuration, one lead of each signal source should be
connected to an AI channel pin (AI 0, AI 1, ...) and the other lead to AI GND.

Nonreferenced Single-Ended mode (NRSE)

If you have many custom devices to connect and you are not sure whether they are properly
grounded to earth, Nonreferenced Single-Ended should be the mode of your choice. In this mode, one
lead must be connected to an AI channel pin (AI 0, AI 1, ...) and the other lead to AI SENSE.

37

11. Appendix
BHV2 Binary Structure

BHV2 is a custom binary format designed to store MATLAB variables. It has a very simple
structure that can be read with a recursive algorithm.

BHV2 has no file header and just contains the contents of variables. Each variable block starts
with 6 fields like the following. The 1st, 3rd, 5th fields Indicates the lengths of the 2nd, 4th, 6th fields,
respectively.

If the variable type is one of the MATLAB primitive data types (char, integers, single, double,
logical), then the content of the variable follows those 6 fields in column-major order. For example, if A
= rand(2,2), the byte order of A will be like this.

If the variable type is struct, there is one more field of uint64 that indicates the number of fields.
Then the first field of the first struct array starts.

 ex) A = [struct('a',1,'b','xyz') struct('a',9,'b','')]; % the number
of fields is 2; a & b.

If the variable type is cell, the cells of the cell array comes in column-major order.

 ex) A = cell(3,2);

38

Byte order of a struct

A(1).a = [1 2 3];
A(1).b = 'xyz';
A(2).a = [5 6; 7 8];
A(2).b = '';

 1 [1x1 uint64] % length(‘A’)
 A [1x1 char] % struct name
 6 [1x1 uint64] % length(‘struct’)
 struct [1x6 char] % variable type
 2 [1x1 uint64] % dimension of variable
 [1 2] [1x2 double] % size of struct
 2 [1x1 uint64] % number of fields in A
 1 [1x1 uint64] % length(‘a’)
 a [1x1 char] % name of the first field
 6 [1x1 uint64] % length(‘double’)
 double [1x6 char] % variable type
 2 [1x1 uint64] % dimension of variable
 [1 3] [1x2 double] % size of variable
 1 2 3 [1x3 double] % content of the first field
 1 [1x1 uint64] % length(‘b’)
 b [1x1 char] % name of the second field
 4 [1x1 uint64] % length(‘char’)
 char [1x4 char] % variable type
 2 [1x1 uint64] % dimension of variable
 [1 3] [1x3 double] % size of variable
 xyz [1x3 char] % content of the second field
 1 [1x1 uint64] % length(‘a’)
 a [1x1 char] % name of the first field
 6 [1x1 uint64] % length(‘double’)
 double [1x6 char] % variable type
 2 [1x1 uint64] % dimension of variable
 [2 2] [1x2 double] % size of variable
 5 7 6 8 [2x2 double] % content of the first field
 1 [1x1 uint64] % length(‘b’)
 b [1x1 char] % name of the second field
 4 [1x1 uint64] % length(‘char’)
 char [1x4 char] % variable type
 2 [1x1 uint64] % dimension of variable
 [0 0] [1x2 double] % size of variable
 '' [0x0 char] % content of the second field
 (end)

The last byte in the above example does not exist since its content is blank. Note that the
content of A(2).a is written as [5 7 6 8], not [5 6 7 8], since arrays are in column major order in MATLAB.

39

Byte order of a cell

A = cell(2,2);
A{1,1} = [1 2 3];
A{1,2} = 'xyz';
A{2,1} = [5 6; 7 8];
A{2,2} = '';

 1 [1x1 uint64] % length(‘A’)
 A [1x1 char] % cell array name
 4 [1x1 uint64] % length(‘cell’)
 cell [1x4 char] % variable type
 2 [1x1 uint64] % dimension of variable
 [2 2] [1x2 double] % size of cell array
 0 [1x1 uint64] % A{1,1} doesn’t have name
 '' [0x0 char] % no name
 6 [1x1 uint64] % length(‘double’)
 double [1x6 char] % variable type
 2 [1x1 uint64] % dimension of variable
 [1 3] [1x2 double] % size of variable
 1 2 3 [1x3 double] % content of the A{1,1}
 0 [1x1 uint64] % A{2,1} doesn’t have name
 '' [0x0 char] % no name
 6 [1x1 uint64] % length(‘double’)
 double [1x6 char] % variable type
 2 [1x1 uint64] % dimension of variable
 [2 2] [1x2 double] % size of variable
 5 7 6 8 [2x2 double] % content of A{2,1}
 0 [1x1 uint64] % A{1,2} has no name
 '' [0x0 char] % no name
 4 [1x1 uint64] % length(‘char’)
 char [1x4 char] % variable type
 2 [1x1 uint64] % dimension of variable
 [1 3] [1x2 double] % size of variable
 xyz [1x3 double] % content of A{1,2}
 0 [1x1 uint64] % A{2,2} has no name
 '' [0x0 char] % no name
 4 [1x1 uint64] % length(‘char’)
 char [1x4 char] % variable type
 2 [1x1 uint64] % dimension of variable
 [0 0] [1x2 double] % size of variable
 '' [0x0 char] % content of A{2,2}
 (end)

Again, the fields that have any 0-sized dimension are not written to the file. And not only a
double matrix (A{2,1}) but also a cell array (‘A’ itself) is arranged in column major order.

40

HDF5 Implementation

Creating and reading .h5 files are implemented with MATLAB’s low-level HDF5 access functions.
In BHV2, the name, type and size of each variable are stored in the 6 fields that come at the beginning of
each variable block. In H5, those fields are stored as attributes of datasets or groups.

The HDF5 implementation in MATLAB R2014b or earlier does not allow to create a 0-sized
dataspace. So the H5 files created in those versions contains a single 0, even when the variable is empty.
If the size attribute of a variable is 0, you should discard its value, 0, when you read the variable in your
application.

The MATLAB primitive data types are stored in datasets. The struct and cell arrays are created as
groups of the fields or cells.

H5 can be read with any common HDF5 tool, like HDFView
(https://support.hdfgroup.org/products/java/hdfview/).

Refer to mlhdf5.m for implementation details.

41

TrialRecord Structure

TrialRecord is a MATLAB struct that contains information about the trial history. This structure
has the following fields that are updated every trial.

Fields of TrialRecord Remarks

CurrentTrialNumber The currently executing trial number, consecutively numbered from the
start of the session (scalar)

CurrentTrialWithinBlock The currently executing trial number, consecutively numbered from the
start of the current block (scalar)

CurrentCondition The condition number of the current trial (scalar)
CurrentBlock The block number of the current trial (scalar)

CurrentBlockCount The total number of blocks played thus far, including the current one
(scalar)

CurrentConditionInfo A struct created from the “info” column of the conditions file

CurrentConditionStimulusInfo Information about the stimuli used in the current trial (cell array, one
cell per TaskObject)

ConditionsPlayed The list of conditions played since the start of the session (a vector of
length (CurrentTrialNumber - 1))

ConditionsThisBlock The list of conditions which are available for selection from within the
current block (vector of variable length)

BlocksPlayed The list of blocks played since the start of the session (a vector of length
(CurrentTrialNumber - 1))

BlockCount The number of blocks played, as of any given trial thus far (a vector of
length (CurrentTrialNumber - 1))

BlockOrder The order of blocks played thus far, including the current block (vector)
BlocksSelected The list of blocks available, as selected from the main menu (vector)

TrialErrors The list of behavioral errors for every trial played so far (a vector of
length (CurrentTrialNumber - 1))

ReactionTimes The list of reaction times for every trial played so far (a vector of length
(CurrentTrialNumber - 1))

LastTrialAnalogData A structure containing the fields EyeSignal and Joystick, with the x- and
y-vectors of the last trial's analog signals

LastTrialCodes A structure containing the fields CodeNumbers and CodeTimes,
containing vectors corresponding to each

Editable A struct of “editable” variables defined in the timing script

42

While the above fields are automatically updated by NIMH ML and not editable, TrialRecord has a few
other user-editable fields for the task flow control and the data exchange.

Field of TrialRecord Default Value Remarks
Pause false If true, the task will be pause after the current trial.
Quit false If true, the task will be quitted after the current trial.

DrawTimeLine true
If false, the Time Line panel of the control screen is NOT
updated after each trial. This option is useful to suppress the
output, when there are too many event codes to draw.

MarkSkippedFrames false If true, eventcode 13 will be marked in case of frame skipping.

DiscardSkippedFrames true If true, missing frames of movies are discarded when skipped
frames occur.

User [] This is a field that users can store temporary variables that
they want to pass to other functions across trials.

TrialRecord is used as input to many functions during tasks, such as timing scripts, condition-
selection functions, block-selection functions, block-change functions, user-plot functions and user-
generated image functions. If you need to deliver additional input to those functions, you can do so by
creating new fields under TrialRecord.User and assign values there.

43

Structure of Conditions File

Conditions files are text files which specify each possible combination of stimuli ("TaskObjects")
within a trial. Each of these stimulus combinations comprising a unique trial type is referred to as a
"condition." During experiment execution, conditions are selected to run as determined by the options
set in the main menu. They can be grouped into blocks and selected collectively. The rule of
selecting/switching blocks can also be determined on the menu (see Blocks and Block-change function).

Below is an example of a conditions file for a delayed match-to-sample task using a total of 4
picture stimuli (A, B, C and D). A conditions file consists of a header followed by consecutively
numbered conditions. All columns are tab-delimited (multiple tabs without text will be reduced to one,
and no intervening blank columns are permitted).

Condition Info Frequency Block Timing
File TaskObject#1 TaskObject#2 TaskObject#3 TaskObject#4

1 'samp','A','match',-1 1 1 3 dms fix(0,0) pic(A,0,0) pic(A,-4,0) pic(B,4,0)

2 'samp','A','match',1 1 1 3 dms fix(0,0) pic(A,0,0) pic(A,4,0) pic(B,-4,0)

3 'samp','B','match',-1 1 1 3 dms fix(0,0) pic(B,0,0) pic(B,-4,0) pic(A,4,0)

4 'samp','B','match',1 1 1 3 dms fix(0,0) pic(B,0,0) pic(B,4,0) pic(A,-4,0)

5 'samp','C','match',-1 1 2 3 dms fix(0,0) pic(C,0,0) pic(C,-4,0) pic(D,4,0)

6 'samp','C','match',1 1 2 3 dms fix(0,0) pic(C,0,0) pic(C,4,0) pic(D,-4,0)

7 'samp','D','match',-1 1 2 3 dms fix(0,0) pic(D,0,0) pic(D,-4,0) pic(C,4,0)

8 'samp','D','match',1 1 2 3 dms fix(0,0) pic(D,0,0) pic(D,4,0) pic(C,-4,0)

The Info column is here being used to pass labels to the timing file about which image is being
used for the sample and where the matching image is being displayed; this column is intended to make
deciphering the conditions easier for the user, and does not affect actual task execution. Users can
access this information in the timing script, like “Info.samp” and “Info.match”. This column is
optional and you can delete it from the header, if you don’t need it.

The Frequency column gives the weight or likelihood of that particular condition being selected
randomly relative to other conditions. For example, if a condition has a relative frequency of 3, it is as if
that condition is listed 3 times; that is, it has 3 times the chance of being selected as a trial with a
relative frequency of 1, if conditions are being selected at random within each block.

In the Block column, the numbers correspond to those blocks in which each condition can
appear. Here, for instance, block 1 uses only images A and B, block 2 uses C and D, and all images are
used in block 3. Therefore, if the user chooses to run only block 2 from the main menu (or if that block
is selected on-line during task execution according to pre-specified criteria), only conditions 5-8 will
constitute the pool of possible conditions to run; running block 3, on the other hand, will allow all
conditions to be placed into the selection pool.

44

The Timing File refers to the Matlab m-script which calls up each stimulus at the appropriate
instant and checks for fixation, target acquisition, etc. Each condition can be associated with a different
timing file, if desired.

TaskObjects are identified by their columnar locations (i.e., TaskObject numbers). They consist
of three-letter symbols (FIX, PIC, MOV, CRC, SQR, SND, STM, TTL and GEN) and parameters for their
generation or display (see TaskObjects for details).

45

TaskObjects

Type Syntax Remarks
Fixation point1 fix(Xdeg, Ydeg) • Xdeg and Ydeg: XY positions in degrees2

Static image1

pic(filename, Xdeg, Ydeg)
pic(filename, Xdeg, Ydeg, colorkey)
pic(filename, Xdeg, Ydeg, Wpx, Hpx)
pic(filename, Xdeg, Ydeg, Wpx, Hpx, colorkey)

• filename: BMP, GIF, JPG, TIF or PNG
• Xdeg and Ydeg: in degrees2
• colorkey: a color [R G B] which will be treated as
transparent
• Wpx and Hpx: optional resizing parameters (width and
height in pixels)

Movie1 mov(filename, Xdeg, Ydeg)
• filename: AVI or MPG
• Xdeg and Ydeg: in degrees2

Circle1 crc(radius, RGB, fill, Xdeg, Ydeg)

• radius: in degrees
• RGB: a triplet [R G B] with values 0-1
• fill: 0 (outline) or 1 (filled)
• Xdeg and Ydeg: in degrees2

Square1 sqr(size, RGB, fill, Xdeg, Ydeg)

• size: 1 element (square) or 2 (rectangle) in degrees
• RGB: a triplet [R G B] with values 0-1
• fill: 0 (outline) or 1 (filled)
• Xdeg and Ydeg: in degrees2

Sound
snd(filename)
snd(sin, duration, frequency)

• filename: WAV or MAT3
• sin is to be typed literally.
• duration: in seconds
• frequency: in Hertz

Stimulation
stm(port, datasource)
stm(port, datasource, retriggerable)

• port: Stimulation # on the main menu I/O panel
• datasource: MAT3
• retriggerable: 0 (can be triggered only once) or 1
(multiple times)4

TTL pulse ttl(port) • port: TTL # on the main menu I/O panel
User-
generated Pic
or Mov1

gen(function_name)
gen(function_name, Xdeg, Ydeg)

• function_name: a user-provided MATLAB function5
• Xdeg and Ydeg: in degrees2

1. For visual stimuli, an object with a smaller number will layer atop those with larger
numbers. For example, when TaskObject#1 and TaskObject#2 are presented at the same
location, TaskObject#1 will appear in front of TaskObject#2.

2. Relative to the screen center. + is up & right.

3. The MAT files must contain two variables, “y” and “fs”, for waveform and frequency,
respectively.

4. When the “retriggerable” flag of an STM object is 1, stopping the stimulation will take a slightly
longer time, to reload the waveform.

46

5. The GEN user function can take one of the following prototypes.

imdata = gen_func(TrialRecord);
imdata = gen_func(TrialRecord, MLConfig);
[imdata, info] = gen_func(___);
[imdata, Xdeg, Ydeg] = gen_func(___);
[imdata, Xdeg, Ydeg, info] = gen_func(___);

The GEN function takes the TrialRecord structure as input and can optionally take the MLConfig
structure as the second argument.

imdata can be a filename or a matrix of one of the following dimensions.

X-by-Y: gray-scale image
X-by-Y-by-3: RGB image
X-by-Y-by-4: ARGB image (A: alpha channel)
X-by-Y-by-3-by-N: RGB movie (N: # of frames)
X-by-Y-by-4-by-N: ARGB movie (A: alpha channel, N: # of frames)

If Xdeg and Ydeg are not given in the conditions file, they can be provided from the GEN
function. By default, they are both 0.

By adding new fields to the info structure, users can deliver extra information about the GEN
stimulus to the timing script or other user functions. There are a few reserved field names as
below.

info.Colorkey: a value of a color, [R G B], which will be treated as transparent
info.TimePerFrame: intervals of movie frames; in milliseconds
info.Looping: make movies repeated when the last frame is reached

The info structure can be accessed in the timing script or other user functions like the following.

TrialRecord.CurrentConditionsStimulusInfo(TaskObject#).MoreInfo
 or
StimulusInfo(TaskObject#).MoreInfo % for timing script only

47

Runtime Library Functions for Timing Script

You can use the following runtime library functions as well as any valid MATLAB expression,
when you write timing scripts. For the updated details of each function, see the timing script manual
(doc\runtimefunctions.html in the ML directory).

Runtime functions

• bhv_code
• bhv_variable
• dashboard
• editable
• escape_screen
• eventmarker
• eye_position
• get_analog_data
• get_movie_duration
• get_sound_duration
• getkeypress
• goodmonkey
• hotkey
• idle
• joystick_position
• mouse_position
• reposition_object
• rewind_movie
• rewind_sound
• set_bgcolor
• set_iti
• showcursor
• trialerror
• trialtime
• user_text
• user_warning

Version 1 specific

• eyejoytrack
• set_frame_event
• set_frame_order
• set_object_path
• toggleobject

Version 2 specific

• create_scene
• run_scene

ftp://helix.nih.gov/lsn/monkeylogic/ML2_doc/runtimefunctions.html

	1. About NIMH MonkeyLogic
	2. Features
	3. System Requirements
	4. Getting Started
	Obtaining NIMH MonkeyLogic
	Software Installation
	Using a MATLAB app installer
	Using a zip file

	Starting NIMH MonkeyLogic
	Data Files Supported by NIMH MonkeyLogic

	5. Main Menu
	Logo & Load/Save Settings
	Conditions File & Run Button
	Video
	Input / Output
	DAQ board settings
	Non-DAQ devices (USB, TCP/IP, etc.)

	Task

	6. Creating a Task
	Conditions File & Timing Script (Runtime Library Version 1)
	Userloop Function
	Runtime Library Version 2 (“Scene Framework”)
	Background
	Scene Framework
	Adapters
	MonkeyLogic Graphics Library (MGL)

	7. Calibrating Eye/Joystick Signals
	Raw Signal (Pre-calibrated)
	Origin & Gain
	2-D Spatial Transformation

	8. Running a Task
	Loading a Conditions/Userloop File
	Pause Menu
	Control Screen
	Behavioral Summary & mlplayer

	9. Example: Delayed Match-to-Sample Task
	DMS Conditions File
	DMS Timing Script

	10. NI Multifunction I/O Device
	Selecting a DAQ Board
	Device Pinouts
	Analog Input Ground Configuration
	Differential mode (DIFF)
	Referenced Single-Ended mode (RSE)
	Nonreferenced Single-Ended mode (NRSE)

	11. Appendix
	BHV2 Binary Structure
	Byte order of a struct
	Byte order of a cell

	HDF5 Implementation
	TrialRecord Structure
	Structure of Conditions File
	TaskObjects
	Runtime Library Functions for Timing Script

